Stanford released the new AI Index Report. Some of the key takeaways are:
The Industry takes over and leaves academia behind.
Scientific research is accelerating thanks to AI.
Misuse and use of Ai are rapidly growing.
Demand for AI-related skills is growing
Companies that use AI are leaving behind those who do not.
China is the most active country in machine learning and also the most positive about AI.
The USA is building the most powerful AI systems.
The report sadly does not include GPT-4 and other newer results. I still highly recommend looking into the report. They did a great job capturing some key trends in a very clear and visual way. For example, the following graph shows the exponential growth of machine learning systems.
Google’s new ViT-22B is the largest Vision Transformer model by far, with 22 billion parameters. It has achieved SOTA in numerous benchmarks such as depth estimation, image classification, and semantic segmentation. ViT-22B has been trained on four billion images and can be used for all kinds of computer vision tasks.
This result shows that further scaling in vision transformers can be as valuable as it was for Language Models. This also indicated that future multimodal models can be improved and GPT-4 is not the limit.
Meta announced two major advancements toward general-purpose embodied AI agents capable of performing challenging sensorimotor skills.
The first advancement is an artificial visual cortex (called VC-1) that supports a diverse range of sensorimotor skills, environments, and embodiments. VC-1 is trained on videos of people performing everyday tasks from the Ego4D dataset. VC-1 matches or outperforms sota results on 17 different sensorimotor tasks in virtual environments.
The second advancement is a new approach called adaptive (sensorimotor) skill coordination (ASC), which achieves near-perfect performance (98 percent success) on the challenging task of robotic mobile manipulation (navigating to an object, picking it up, navigating to another location, placing the object, repeating) in physical environments.
These improvements are needed to move the field of robotics forward and match the current pace in AI which will need bodies at some point.
A group of researchers and notable people released an open letter in which they call for a 6 month stop from developing models that are more advanced than GPT-4. Some of the notable names are researchers from competing companies like Deepmind, Google, and Stability AI like Victoria Krakovna, Noam Shazeer, and Emad Mostaque. But also some professors and authors like Stuart Russell or Peter Warren. The main concern is the lack of control and understanding of these systems and the potential risks that go from misinformation to human extinction.
Alles Denkbare wird einmal gedacht. Jetzt oder in der Zukunft. Was Solomo gefunden hat, kann einmal auch ein anderer finden, […]. / Everything that is conceivable will be thought of at some point. Whether now or in the future. What Solomon has found, another may also find someday […].
Dürrenmatt, Die Physiker
Although I recognize some valid concerns in the letter, I personally disagree with them. As demonstrated in Dürrenmatt’s novel “The Physicists,” technology, no matter how dangerous, cannot be hindered or halted and will always advance. Even if OpenAI were to stop developing GPT-5, other nations would continue to do so, akin to nuclear weapons, which do not provide any benefits. However, AI possesses enormous potential for good, making it difficult to argue against its development. While there is a possibility of AI causing harm, preventing or slowing its progress would prevent billions of people from being aided by its potential benefits. I believe that the risk of a negative outcome is acceptable if it allows us to solve most of our issues. Especially since it looks like right now that a negative outcome is guaranteed without AI, as the climate crises and global conflicts arise.
Cerebras, a hardware company that produces large chips designed for machine learning, released 7 open models ranging from 111 million to 13 billion parameters. all of them are chinchilla aligned and fully open, unlike the LaMA models by Meta. While this is mostly a marketing stunt to show the efficiency of their chips, it is also great news for the open-source community who will use the models to develop a lot of cool new stuff.
Many people saw the new episode of the Lex Friedman Podcast with Sam Altman, where he talks about some social and political implications of GPT-4.
But fewer people saw the podcast with Ilya Sutskever, the Chief Scientist at OpenAI, which is way more technical and in my opinion even more exciting and enjoyable. I really recommend listening to the talk which is only 45 minutes long.
Microsoft researchers have conducted an investigation on an early version of OpenAI’s GPT-4, and they have found that it exhibits more general intelligence than previous AI models. The model can solve novel and difficult tasks spanning mathematics, coding, vision, medicine, law, psychology, and more, without needing any special prompting. Furthermore, in all of these tasks, GPT-4‘s performance is strikingly close to human-level performance and often vastly surpasses prior models. The researchers believe that GPT-4 could be viewed as an early (yet still incomplete) version of an artificial general intelligence (AGI) system. This is in line with my own experience and shows that we are closer to AGI than we thought.
The study emphasizes the need to discover the limitations of such models and the challenges ahead for advancing towards deeper and more comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond next-word prediction. The study concludes with reflections on the societal implications of the recent technological leap and future research directions.
A new research paper proposes a method to accelerate the training of large-scale transformers, called the Linear Growth Operator (LiGO). By utilizing the parameters of smaller, pre-trained models to initialize larger models, LiGO can save up to 50% of the computational cost of training from scratch while achieving better performance. This approach could have important implications for the field of AGI by enabling more efficient and effective training methods for large-scale models, and potentially leading to more flexible and adaptable models that can learn to grow and evolve over time. If this is already used to train GPT-5 it could mean that we get GPT-5 earlier than expected.
OpenAI announced that they will introduce plugins to ChatGPT. Two of them developed by OpenAi themself allow the model to search the web for information and run generated python code. Other third-party plugins like Wolfram allow the model to use other APIs to perform certain tasks. the future capabilities of a model enhanced this way are limitless. I talked about this development in my Post “From GPT-4 to Proto-AGI” where I predicted this development. If the capability to run generated code is not too limited, I would call this Proto-AGI.
After Copilot became inferior to GPT-4, they finally announced a set of new functionalities based on GPT-4, like Generated pull requests, answering questions about code or documentation, and helping with coding.
Google’s GPT alternative Bard is now available in the US and UK. Early testers already speak out in favor of Bing which also launched image generation this week. Bard is based on LaMDA, an older Language model that is not as capable as GPT-4.
Right now the GTC 2023 is going on and Nvidia showed off some of their newest steps in AI including this amazing Intro.
They introduced cuLitho, a new tool to optimize the design of processors. This was a complicated process that took weeks to calculate and can now be done in a few hours. Speeding up the chip design will lead to a speedup of the entire industry and shows how positive feedback loops power exponential growth.
They also talked about their new H100 chips for their DGX supercomputers. These chips will not only power the servers of big AI players like Aws, Azure, and OpenAI, but also Nvidias own cloud servers, which will be available for smaller companies.
Part of this Cloud service will be Nvidia cloud foundation will provide pre-trained models for text, image, and protein-sequencing and will run the training and interference of the models. One of the first users is Adobe, which uses the service for its new AI service Firefly.
In the end, they also presented a new server CPU “Grace” and the Bluefield-3 DPU which will power future data centers.
I am most impressed by their hardware improvements and their AI cloud platform which will both accelerate Ai adoption greatly.
Artificial General Intelligence (AGI) is the ultimate goal of many AI researchers and enthusiasts. It refers to the ability of a machine to perform any intellectual task that a human can do, such as reasoning, learning, creativity, and generalization. However, we are still far from achieving AGI with our current AI systems. One of the most advanced AI systems today is GPT-4, a large multimodal model created by OpenAI that can take text and pictures as input and outputs text. So how far away from AGI is GPT-4 and what do we need to do to get there?
What GPT-4 is capable of?
GPT-4 is a successor of GPT-3.5, which was already impressive in its ability to generate coherent and fluent text on various topics and domains. GPT-4 improves on GPT-3.5 by being more reliable, creative, and able to handle much more nuanced instructions than its predecessor. For example, it can pass a simulated bar exam with a score around the top 10% of test takers; in contrast, GPT-3.5’s score was around the bottom 10%. It also generates medium-sized working programs and can reason to a certain extent. The context window of GPT-4 is 32K tokens which allows it to produce entire programs.
GPT-4 also adds a new feature: visual input. It can accept image and text inputs together and emit text outputs that are relevant to both modalities. For instance, it can describe what is happening in an image or understand its relevance in a given context. This makes GPT-4 more versatile and useful for various applications that require multimodal understanding.
However, despite its impressive capabilities, GPT-4 is still far from being able to perform all the tasks that humans can do with language and images. It still lacks some crucial components that are necessary for achieving AGI.
What do we need to add?
One of the main limitations of GPT-4 is that it has no memory. It cannot remember what it has said, outside of its context window, or learned before, and cannot use it for future reference or inference. This means that it cannot build long-term knowledge or relationships with its users or other agents. It also means that it cannot handle complex reasoning tasks that require multiple steps or facts that exceed its context window.
Another limitation of GPT-4 is that it has no access to tools that can help it solve problems or learn new skills. For example, it cannot use the Internet to search for information on the web; Wolfram Alpha to compute mathematical expressions; databases to store and retrieve data; or other APIs to interact with external services. This limits its ability to acquire new knowledge or perform tasks beyond outputting text.
A third limitation of GPT-4 is that it has no inner thinking. It is strictly an input-output machine that produces exactly one piece of text for every input it gets. In between inputs it does nothing and is in the same state every time. The ability to simulate possible situations is called mental simulation and is one of the key abilities of the human brain. It is a fundamental form of computation in the brain, underlying many cognitive skills such as mindreading, perception, memory, and language. The fact that all Transformer based AI systems are not capable of that in their current form, is, in my opinion, the main reason why AGI is still not in sight.
How do we do this?
To overcome these limitations and move closer towards AGI, we need to add some features and functionalities to GPT-4 that can substitute for these shortcomings.
One possible way to do this is by using chain prompts. Chain prompts are sequences of inputs and outputs that guide the model through a series of steps or actions towards a desired goal. For example, we can use chain prompts to instruct GPT-4 to search for information on the Internet. By using chain prompts, we can extend GPT-4‘s capabilities and make it more powerful and transparent. Instead of giving the Model the input directly, we would ask it which parts of the input it needs more information on, and then we get a list of keywords selected by the model that we feed into a search engine. In the last step, we add the information that we got to the original input and give the user the final output.
Another possible way to do this is by using Toolformer. Toolformer was proposed by Meta that allows us to integrate external tools into LLMs by using special tokens that represent tool names. The model would be fine-tuned on text examples of API calls. For example, we can use Toolformer to write: Input: What is 2 + 2? Output:The answer is <calculator args=”2+2″>4</calculator>. This way, GPT-4 can learn to use tools by observing how they are used in natural language contexts. Toolformer can also handle complex tool compositions and nested tool calls. Some tools that would drastically enhance the capabilities of GPT are
Wolfram Alpha (Math)
A calendar (temporal awareness),
A search engine (information gathering)
A database(memory)
A command line (general control)
Especially the last part is really special. By giving a powerful enough model access to a computer, and combining this with other methods such as chain prompting, we could enable unlimited possibilities. One special case of these techniques that I want to highlight is code execution. An LLM that can run generated code itself and receive the output could build the programs to solve every task it gets. This starts with writing simple functions to solve equations to controlling a smart home or fine-tuning itself.
We can also add memory this way by giving it access to a database. We could use chain prompting to ask the model if parts of the input or output should be saved for the future and combine it with a writing call to the database. We then could use embeddings to search the database for every input and extract relevant information. Embeddings are vector representations of text that decode the meaning of the text. Asking the model about an appointment with your doctor would be represented by a vector that is similar to the vector that represents the information about the appointment in the database. The solution is not perfect but would add memory to the model.
Where we are right now
We already see the start of these augmentations. The first one was BingGPT which augments GPT-4 with a search engine. The most recent and impressive one is Microsoft’s copilot for Microsoft 365, which combines GPT-4 with all the Office tools and their Microsoft Graph system, which also gives it access to all your documents. Other companies will follow even though the integration is limited since the model is not Open source and OpenAI are the only ones able to fine-tune it. But for most of these techniques, you can use Langchain which is a new code library that contains many of the described ways to improve GPT.4
What we could see until the end of the year
All these methods are not mutually exclusive and can be combined in different ways depending on the task and context. Many companies are already or going to integrate GPT-4 into their products. And the more tools can be controlled by natural language the easier it will be for other LLMs to use them. Until the end of the year, we will see Language Models talking to each other. I can see a near future where we have our own custom model that talks to BingGPT, Copilot, or other software and takes on the role of a dirigent of other instances of GPT-4. But there are also risks. Giving the model too much control could lead to chains of mistakes if the model is not powerful enough and makes mistakes or it could lead to a complete takeover and fast takeoff if future models like GPT-5 or 6 are too powerful. This is unlikely as long as OpenAI holds tight control over the development and execution of these models, but the competition is growing and broadly available Hardware and software are becoming better and better. This year will be the rise of AI and next year could be the birth year of proto-AGI.
Update: shortly after I finished this post, this paper was released. It talks about a form of memorizing transformer, which I found to be quite relevant to this post.
German version below
Von GPT-4 zu Proto-AGI
Artificial General Intelligence (AGI) ist das ultimative Ziel vieler AI-Forscher und Enthusiasten. Es bezieht sich auf die Fähigkeit einer Maschine, jede geistige Aufgabe auszuführen, die ein Mensch tun kann, wie etwa das Denken, Lernen, Kreativität und Generalisierung. Allerdings sind wir noch weit davon entfernt, AGI mit unseren derzeitigen AI-Systemen zu erreichen. Eines der fortschrittlichsten AI-Systeme aktuell ist GPT-4, ein großes multimodales Modell, dass von OpenAI erstellt wurde und Text und Bilder als Eingabe nimmt und Text als Ausgabe produziert. Also wie weit ist GPT-4 von AGI entfernt und was müssen wir tun, um dorthin zu gelangen?
Was kann GPT-4?
GPT-4 ist der Nachfolger von GPT-3.5, dass bereits beeindruckend ist in seiner Fähigkeit, zusammenhängenden und flüssigen Text zu verschiedenen Themen und Domänen zu generieren. GPT-4 verbessert GPT-3.5, indem es zuverlässiger, kreativer und in der Lage ist, viel nuanciertere Anweisungen als sein Vorgänger zu handhaben. Zum Beispiel kann es eine simulierte Bar-Prüfung mit einer Punktzahl um die Top 10% der Testteilnehmer bestehen; im Gegensatz dazu lag die Punktzahl von GPT-3.5 bei rund 10% am unteren Ende. Es generiert auch mittelgroße funktionierende Programme und kann bis zu einem gewissen Grad schlussfolgern. Das Kontextfenster von GPT-4 umfasst 32 tausend Token, was es ermöglicht, ganze Programme zu erstellen.
GPT-4 fügt auch eine neue Funktion hinzu: visuelle Eingabe. Es kann sowohl Bild- als auch Texteingaben akzeptieren und Textausgaben liefern, die für beide Modalitäten relevant sind. Zum Beispiel kann es beschreiben, was in einem Bild passiert, oder den inhalt eines Bildes in einen Kontext einzuordnen. Dies macht GPT-4 vielseitiger und nützlicher für verschiedene Anwendungen, die ein multimodales Verständnis erfordern.
Was noch fehlt?
Trotz seiner beeindruckenden Fähigkeiten ist GPT-4 jedoch noch weit davon entfernt, alle Aufgaben ausführen zu können, die Menschen mit Sprache und Bildern bewältigen können. Es fehlen noch einige wesentliche Komponenten, die für die Erreichung von AGI notwendig sind.
Eine der Hauptbeschränkungen von GPT-4 ist, dass es kein Gedächtnis hat. Es kann sich nicht daran erinnern, was es gesagt hat, außerhalb seines Kontextfensters oder was es zuvor gelernt hat, und kann es nicht für zukünftige Referenzen oder Rückschlüsse verwenden. Dies bedeutet, dass es kein langfristiges Wissen oder Beziehungen zu seinen Benutzern oder anderen Agenten aufbauen kann. Es bedeutet auch, dass es keine komplexen Denkaufgaben bewältigen kann, die mehrere Schritte erfordern oder Fakten überschreiten, die sein Kontextfenster übersteigen. Eine weitere Einschränkung von GPT-4 ist, dass es keinen Zugang zu Tools hat, die ihm helfen können, Probleme zu lösen oder neue Fähigkeiten zu erlernen. Es kann z.B. nicht das Internet nutzen, um nach Informationen im Web zu suchen; Wolfram Alpha zur Berechnung mathematischer Ausdrücke; Datenbanken zur Speicherung und Abfrage von Daten oder andere APIs zur Interaktion mit externen Diensten. Dies begrenzt seine Fähigkeit, neues Wissen zu erwerben oder Aufgaben jenseits des Textausgabe zu erledigen. Eine dritte Einschränkung von GPT-4 ist, dass es kein inneres Denken hat. Es ist streng genommen eine Input-Output-Maschine, die für jede Eingabe genau ein Textstück produziert. Zwischen den Eingaben tut es nichts und ist jedes Mal im gleichen Zustand. Die Fähigkeit, mögliche Situationen zu simulieren, wird als mentale Simulation bezeichnet und ist eine der Schlüsselkompetenzen des menschlichen Gehirns. Sie ist eine grundlegende Form der Berechnung im Gehirn und liegt vielen kognitiven Fähigkeiten wie Gedankenlesen, Wahrnehmung, Gedächtnis und Sprache zugrunde. Die Tatsache, dass alle auf der Transformer-Technologie basierenden KI-Systeme in ihrer derzeitigen Form dazu nicht in der Lage sind, ist meiner Meinung nach der Hauptgrund, warum AGI noch nicht in Sicht ist.
Wie können wir das erreichen?
Um diese Einschränkungen zu überwinden und uns der AGI näher zu bringen, müssen wir GPT-4 einige Funktionen und Eigenschaften hinzufügen, die diese Mängel ausgleichen können. Eine mögliche Methode dafür sind sogenannte “Chain Prompts“. Chain Prompts sind Folgen von Eingaben und Ausgaben, die das Modell durch eine Reihe von Schritten oder Aktionen hin zu einem gewünschten Ziel führen. Zum Beispiel können wir Chain Prompts verwenden, um GPT-4 anzuweisen, im Internet nach Informationen zu suchen. Mit Chain Prompts können wir die Fähigkeiten von GPT-4 erweitern und es leistungsfähiger und transparenter machen. Anstatt dem Modell die Eingabe direkt zu geben, würden wir es fragen, welche Teile der Eingabe mehr Informationen benötigen, dann bekommen wir eine Liste von Schlüsselwörtern, die vom Modell ausgewählt wurden und die wir in eine Suchmaschine eingeben. Im letzten Schritt fügen wir die erhaltenen Informationen der ursprünglichen Eingabe hinzu und geben dem Benutzer die endgültige Ausgabe.
Eine weitere mögliche Methode hierfür ist die Verwendung von Toolformer. Toolformer wurde von Meta entwickelt und ermöglicht uns, externe Tools in LLMs zu integrieren, indem wir spezielle Tokens verwenden, die Toolnamen darstellen. Das Modell würde mit Textbeispielen von API-Aufrufen verfeinert werden. Zum Beispiel können wir Toolformer verwenden, um Folgendes zu schreiben:
Eingabe: What is 2 + 2? Ausgabe: The answer is <calculator args=”2+2″>4</calculator>.
Auf diese Weise kann GPT-4 lernen, Tools zu verwenden, indem es beobachtet, wie sie in natürlichen Sprachkontexten verwendet werden. Toolformer kann auch komplexe Toolzusammensetzungen und verschachtelte Toolaufrufe verarbeiten. Einige Tools, die die Fähigkeiten von GPT drastisch verbessern würden, sind
Wolfram Alpha (Mathematik)
Kalender (zeitliche Kenntnisse)
Suchmaschine (Informationsbeschaffung)
Datenbank (Speicher)
Commandozeile (generelle Kontrolle).
Besonders der letzte Punkt ist sehr wichtig. Indem wir einem ausreichend mächtigen Modell Zugang zu einem Computer geben und dies mit anderen Methoden wie Chain Prompting kombinieren, könnten wir unbegrenzte Möglichkeiten eröffnen. Ein spezieller Fall dieser Techniken, den ich hervorheben möchte, ist die Ausführung von Code. Ein Sprachmodel, das generierten Code selbst ausführen und die Ausgabe empfangen kann, könnte Programme zum Lösen jeder Aufgabe erstellen. Dies beginnt mit dem Schreiben einfacher Funktionen zur Lösung von Gleichungen bis hin zur Steuerung eines Smart Homes oder der eigenen Verbesserung.
Auf diese Weise können wir dem Modell auch Zugriff auf eine Datenbank geben, um so den Speicher zu erweitern. Wir könnten Chain Prompting nutzen, um das Modell zu fragen, ob Teile der Eingabe oder Ausgabe für die Zukunft gespeichert werden sollen, und es mit einem Schreibbefehl an die Datenbank kombinieren. Anschließend könnten wir Embeddings verwenden, um die Datenbank nach jeder Eingabe zu durchsuchen und relevante Informationen zu extrahieren. Embeddings sind Vektor-Textdarstellungen, die die Bedeutung des Textes entschlüsseln. Wenn wir das Modell beispielsweise nach einem Termin mit unserem Arzt fragen, wird ein Vektor erstellt, der ähnlich dem Vektor ist, mit dem die Informationen über den Termin in der Datenbank dargestellt werden. Die Lösung ist zwar nicht perfekt, würde aber dem Modell Gedächtnis hinzufügen.
Der aktuelle Stand
Wir sehen bereits den Beginn dieser Erweiterungen. Die erste war BingGPT, die GPT-4 mit einer Suchmaschine erweitert. Die neueste und beeindruckendste ist Microsofts Copilot für Microsoft 365, eine Kombination aus GPT-4 und allen Office-Tools sowie ihrem Microsoft Graph-System, das auch Zugriff auf alle deine Dokumente gibt. Andere Unternehmen werden folgen, obwohl die Integration begrenzt ist, da das Modell nicht Open Source ist und nur OpenAI es feinabstimmen kann. Besonders hervorheben möchte ich Langchain eine code bibliothek die viele der hier beschrieben Techniken seh vereinfacht
Was noch diesen Jahr passieren kann
All diese Methoden schließen einander nicht aus und können je nach Aufgabe und Kontext auf unterschiedliche Weise kombiniert werden. Viele Unternehmen integrieren bereits oder werden GPT-4 in ihre Produkte integrieren. Und je mehr Werkzeuge von natürlicher Sprache gesteuert werden können, desto einfacher wird es für andere LLMs sein, sie zu nutzen. Bis Ende des Jahres werden wir sehen, wie Sprachmodelle miteinander sprechen. Ich kann mir eine nahe Zukunft vorstellen, in der wir unser eigenes benutzerdefiniertes Modell haben, das mit BingGPT, Copilot oder anderen Software spricht und die Rolle eines Dirigenten für andere Instanzen von GPT-4 übernimmt. Aber es gibt auch Risiken. Wenn das Modell zu viel Kontrolle erhält und nicht leistungsstark genug ist wird es Fehler machem, welche zu Ketten von Fehlern führen können, oder anders herum könnte es zu einem vollständigen Kontrollverlust der Menschen und einer explosionsartigen Entwickung von künstlicher Intelligenz kommen, wenn zukünftige Modelle wie GPT-5 oder 6 zu leistungsfähig sind. Dies ist unwahrscheinlich, solange OpenAI eine strenge Kontrolle über die Entwicklung und Ausführung dieser Modelle ausübt, aber der Wettbewerb wächst und die allgemein verfügbare Hardware und Software werden immer besser. Dieses Jahr wird das Aufkommen von KI sein und nächstes Jahr könnte das Geburtsjahr von Proto-AGI sein.
Da ich nach einer deutschen Version der Posts gefragt wurde ist dies mein erster Versuch Posts zweisprachig zu machen. Ich freue mich über Feedback und kann auf Wunsch auch gerne noch einzelne ältere Posts übersetzen.(Die Übersetzung ist von GPT-3.5 und enhält sprachliche Fehler und suboptimale Formulierungen.)
Update: kurz nachdem ich diesen Aritkel fertig hatte, wurde dieses Paper veröffentlicht. Es geht um eine Form von Transformer mit Gedächnis, was sehr relevant für diesen Artikel ist.
A new study by OpenAI and the University of Pennsylvania investigates the potential impact of Generative Pre-trained Transformer (GPT) models on the U.S. labor market. The paper, titled “GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models,” assesses occupations based on their correspondence with GPT capabilities, using both human expertise and classifications from GPT-4. The study finds that approximately 80% of the U.S. workforce could have at least 10% of their work tasks affected by the introduction of GPTs, while around 19% of workers may see at least 50% of their tasks impacted. The impact spans all wage levels, with higher-income jobs potentially facing greater exposure. The paper concludes that GPTs exhibit characteristics of general-purpose technologies, which could have significant economic, social, and policy implications. This comes to no surprise for everyone who used GPT-4 or watched the recent Microsoft announcment.
I discussed this topic in more depth in my book review of “A World Without Work”. This research supports the author’s point and indicates a radical shift in the economy in the coming years. I highly recommend reading the paper, the book, or at least my book review.
FlexGen is a new generation engine that enables high-throughput inference of large language models on a single commodity GPU. It uses a linear programming optimizer to efficiently store and access tensors and compresses weights and attention cache to 4 bits. FlexGen achieves significantly higher throughput than state-of-the-art offloading systems, reaching a generation throughput of 1 token/s with an effective batch size of 144 on a single 16GB GPU. This means that running LLMs on smaller servers could become viable for more and more companies and individuals.
Researchers from several institutions, including the University of California, Berkeley, and Facebook AI Research, have developed a new transformer model that can process long documents faster and more efficiently than previous models. The team’s paper, titled “CoLT5: Faster Long-Range Transformers with Conditional Computation,” describes a transformer model that uses conditional computation to devote more resources to important tokens in both feedforward and attention layers.
CoLT5’s ability to effectively process long documents is particularly noteworthy, as previous transformer models struggled with the quadratic attention complexity and the need to apply feedforward and projection layers to every token. The researchers show that CoLT5 outperforms LongT5, the previous state-of-the-art long-input transformer model, on the SCROLLS benchmark, while also boasting much faster training and inference times.
Furthermore, the team demonstrated that CoLT5 can handle inputs up to 64k in length with strong gains. These results suggest that CoLT5 has the potential to improve the efficiency and effectiveness of many natural language processing tasks that rely on long inputs.
AssembyAi added a new speech recognition model to their products. Conformer-1 is “a state-of-the-art speech recognition model trained on 650K hours of audio data that achieves near human-level performance and robustness across a variety of data.” It combines convolutional networks with transformers to archive never seen scores on various recognition tasks.
Today Microsoft showed off how they integrated AI tools, including GPT-4, into their office products. You can ask Copilot to build excel tables, PowerPoints, and Emails or ask it about meetings, or lets it summarise documents and chats.
Although currently only available to a select few companies, Copilot is set to become widely available over the next few months. This integration of AI technology has the potential to significantly increase productivity for office workers and could have far-reaching implications for the economy as a whole.
OpenAI presented its new GPT model today. GPT-4 has a context window of 32K tokens and outperforms humans and previous models like GPT-3.5 in almost all language tasks. It is also multimodal and supports images as inputs. Read more here or watch the presentation here.
OpenAI just released GPT-4, a game-changer in AI language models. With a 32k token context window, it outperforms humans and GPT-3.5 in most language tasks. Key improvements: bigger context window, better performance, and enhanced fine-tuning. Exciting applications include content generation, translation, virtual assistants, customer support, and education. Can’t wait to see how GPT-4 reshapes our AI-driven world!
In a new blog post, Google presents their Generative AI App Builder, PaLM API, and MakerSuite which works similarly to OpenAI’s playground.
This announcement is happening shortly before the Microsoft presentation on Thursday. Similar to how they did it with their Bard presentation just before the Bing chat announcement.